Microclimate influence in a physiological model of cattle-fever tick (Boophilus spp.) population dynamics

نویسندگان

  • Michael S. Corson
  • Pete D. Teel
  • William E. Grant
چکیده

Since their official eradication from the US in 1943, the cattle-tick species Boophilus microplus and Boophilus annulatus, vectors of bovine babesiosis, frequently have penetrated a quarantine zone established along the Texas–Mexico border designed to exclude them. Inspection and quarantine procedures have eradicated reinfestations successfully within the US, but increasing acaricide resistance in Mexican B. microplus populations poses a threat to future eradication efforts. Better understanding of interrelationships among Boophilus populations, their hosts, and vegetation communities in south Texas could improve prediction of the behavior of reintroduced Boophilus populations and increase management options. To this end, we constructed a simulation model to evaluate how microclimate, habitat (i.e. vegetation) heterogeneity, and within-pasture cattle movement may influence dynamics of Boophilus ticks in south Texas. Unlike previous Boophilus tick models, this model simulates dynamics at an hourly time-step, calculates all off-host dynamics as functions of temperature and relative humidity, and runs with ground-level microclimate data collected bi-hourly in three different habitat types. Sensitivity analysis of the model showed that temperatures and relative humidities created by habitat type, as well as engorged female mass, influenced tick population dynamics most strongly. Host habitat selection, initial number of larvae per cow, and the number of cells into which the simulated pasture was divided also had a strong influence. Population dynamics appeared moderately sensitive to the proportion of Bos indicus in cattle genotypes and the larval attachment rate, while appearing relatively insensitive to factors such as mortality rate of engorged females. When used to simulate laboratory experiments from the literature, the model predicted most observed life-history characteristics fairly well; however, it tended to underestimate oviposition duration, incubation duration, and egg mortality and overestimate larval longevity, especially at low temperatures and high humidities. Use of the model to predict Boophilus population dynamics in hypothetical south Texas pastures showed that it reasonably generated qualitative patterns of stage-wise abundances but tended to overestimate on-host tick burdens. Collection and incorporation of data that appear not to exist for Boophilus ticks, such as larval lipid content and lipid-use rates, may improve model accuracy. Though this model needs refinements such as a smaller spatial resolution, it provides insight into responses of B. microplus or B. annulatus populations to specific weather patterns, habitat heterogeneity, and host movement. © 2004 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulating detection of cattle-fever tick (Boophilus spp.) infestations in rotational grazing systems

To evaluate the relative influence of ecological and management factors on the probability of detecting cattle-fever tick (Boophilus microplus and Boophilus annulatus) infestations in rotational grazing systems, we adapted a simulation model of Teel et al. [J. Range Manage. 51 (1998) 501] that examines interactions among Boophilus ticks, cattle, and habitat type under rotational grazing systems...

متن کامل

Epidemiology and Control of cattle ticks and tick-borne infections in Central Nigeria

....................................................................................................... ii List of Figures .............................................................................................. x List of Tables ............................................................................................. xiv List of abbreviations .............................................

متن کامل

Exploring the use of an anti-tick vaccine as a tool for the integrated eradication of the cattle fever tick, Rhipicephalus (Boophilus) annulatus.

Bovine babesiosis, also known as cattle fever, is a tick-borne protozoal disease foreign to the United States. It was eradicated by eliminating the vector species, Rhipicephalus (Boophilus) annulatus and Rhipicephalus (Boophilus) microplus, through the efforts of the Cattle Fever Tick Eradication Program (CFTEP), with the exception of a permanent quarantine zone (PQZ) in south Texas along the b...

متن کامل

Bovine immunoprotection against Rhipicephalus (Boophilus) microplus with recombinant Bm86-Campo Grande antigen Imunoproteção de bovinos contra Rhipicephalus (Boophilus) microplus com antígeno recombinante Bm86-Campo Grande

The southern cattle fever tick, Rhipicephalus (Boophilus) microplus, is no doubt the most economically important ectoparasite of cattle globally. The inappropriate use of chemical acaricides has driven the evolution of resistance in populations of R. (B.) microplus. Anti-tick vaccines represent a technology that can be combined with acaricides in integrated control programs to mitigate the impa...

متن کامل

Pharmacological characterization of a tyramine receptor from the southern cattle tick, Rhipicephalus (Boophilus) microplus.

The southern cattle tick (Rhipicephalus (Boophilus) microplus) is a hematophagous external parasite that vectors the causative agents of bovine babesiosis or cattle tick fever, Babesia bovis and B. bigemina, and anaplasmosis, Anaplasma marginale. The southern cattle tick is a threat to the livestock industry in many locations throughout the world. Control methods include the use of chemical aca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004